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Parallelization of an idaptive Multigrid Algorithm for Fast 
Solution of Finite Element Structural Problems 

U E: Cidne' I D Paiwiis'md K D Hlelmst,iti 

Summary 

Adaptive mesh refinement selectively subdivides the elements of a coarse user supplied mesh t o  

produce a fine mesh with reduced discretization error. Effecti\.e use of adaptive mesh rcfinerncnt 
coupled with ;in a posteriori error estimator can produce a mebh that solces a problem to a gibeen 
discretization error using far fe\ver dements than uniform refinement. A geometric multigrid solver 
L ~ S  increasingly finer discretizations of the same geometry to produce a very fast and numcrically 
scalable solution to a set of linear equations. Adaptive mesh retincinent is a natural method for creating 
the different meshes required by the multigrid solver. This paper dcscribes the implementation of a 
scalable adaptive multigrid method on il distributed memory parallel computer. Results are presented 
that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel 
deformation problem on an SGI Origin 3000. 

Two challenges must be met Ivhen implementing adaptive multigrid algorithms on rnas\ively 
parallel computing platforms. First. althoiiph the fine mesh for which the solution is desired may be 
large and scaled to the number of processors. the multigrid algorithm must also operate on much 
smaller fixed-size data sets on tlie coarse levels. Second, the mesh must be repartitioned as it is adapted 
to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require 
separate partitioning, further complicating the load balance problem. This paper shows that. when the 
proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines a i th  
several hundreds of processors. 

Adaptive Mesh Refinement 

Adaptive mesh refinement is a well-known technique for using a posteriori error estimation to 
automatically produce a non-uniform mesh from a relatively coarse user defined mesh (e.g., [ I ] .  [?I). In 
this paper, h-refinement is employed. in which a low order element. such as an eight node hexahedral 
element. is subdivided into a number of similar elements. Both isotropic and anisotropic refinement is 
employed, whereby the error estimator dictates if the original hexahedral element is to be split into 
eight (for isotropic refinement) or less (for anisotropic refinement) new elements. Linear constraints are 
introduced on each refined mesh to maintain tlie required degree of interelement continuity. 

To demonstrate the approach. consider Figure I .  The mesh shown on the left of the figure is a 
section of a coarse star-grain rocket fuel mesh. The entire rocket fuel grain is a long cylinder: a >tar 
shaped hole is cut into the cylinder to increase the initial exposed internal surface area. The structural 
loading on the fuel consists of a large internal pressure and an acceleration loading. The rocket fuel is 
modeled with first-order hexahedral finite elements and linear clastic material properties. It is desired to 
find the static displacements and stresses in the fuel to sonic iiser specified discretization error 
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tolcr;iiicc. Thc w a r x  mc>h 15 x > I \  eLl ai id  [tic crror csti inatccl ii>iiig ai1 a postci-iuri error c\tiiii;itdr 
proposcd by Zienkieaicr and Zhu [2]. Elcmeiits \vith hlsh error ;ire refined to produce the n c ~ '  mesh 
shoLvn i i i  the middle of Figure I .  The prohlciii is sol\,cd on the n e w  mesh and the error estimated. The 
ncn  mesh is refined to produce a yct finer inesh shown on the right of Figure I .  This process continua 
until the user specified discretization crror tolerance is icached. For  the rocket fuel problem. an 
adaptively refined mesh can yield a discretization error tolerance of I % using about -1.000.000 
elements. Uniform refinement requires eight times as many elements to yield the same quality of 
so I u t ion. 

Figure I : User supplied coarse and adaptively refined meshes. 

The Geometric Multigrid Method 

A geometric multigrid solver uses multiple refinements of the same coarse mesh to accelerate the 
solution of a system of equations [4]. Let the meshes shown on the left, center and right of Figure 1 
represent the coarse, the intermediate and the fine meshes in a multigrid sequence, respectively. These 
meshes will be denoted as meshes I ,  2 and 3 .  respectively. I t  is required to solve the systeni of 
equations produced by the finite element discretization of mesh 3. The coarser meshes are used to 
accelerate this solution process via a multigrid V-cycle shown in Figure 2. 

Depending on the problem, between one and ten multigrid V-cycles are usually required to achieve 
an accurate solution to the fine mesh equations. The relaxation steps use a few cycles of conjiigate 
gradient (CG) relaxation to improve the solution on a given mesh. The rocket fuel problem uses 6 CG 
cycles in each relaxation step. The coarse mesh solution step uses CG relaxation as a solver. The 
number of iteration cycles to solve the coarse mesh rocket fiiel problem is about 200. The restriction 
step restricts the residual (i.e.. forces) from a fine mesh to the next coarser mesh. The interpolation step 
interpolates a solution (i.e., displacements) on a coarse mesh to the tine mesh. 

The advantage of a multigrid solver is that the computational work is O(,V), where .Vis the number 
of fine mesh unknowns. An iterative solver such as the CG method is typically O(N 7). while a direct 
factorization method is generally around U(.V ' ') for three dimensional problems. Using an adaptive 
multigrid solver to compute the static solution of a 3,000.00@dement mesh rocket fuel problem on a 
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Figure 2: Schenmtic o f a  3 mesh inidtigrid V-cycle 

Parallelization of an Adaptive !Multigrid Algorithm 

The majority of the computational work in a multigrid cycle is spent performing the relaxations on 
the various mesh levels. The serial timings for an example multigrid solution cycle are shown in Table 
I. For the serial case, the total cycle time is dominated by the fine mesh relaxation step. The coarse 
mesh solution phase of the cycle requires only about 2% of the total solution time. 

I Mesh 1 Number of I Number of I Serial Time I 

Table I : Serial multigrid cycle timings. 

Figure 3 shows CG relaxation speed-up curves for the different mesh sizes considered in Table 1 .  
Two important trends 'are evident in this figure. First. the larger meshes of the multigrid sequence 
produce much better speed-ups than the smaller meshes. This phenomenon can be explained by 
considering a solid cube with cube-shaped mesh partitions. Let a coarse mesh of this region have 63 
elements and be partitioned onto 64 processors. The computational workload of each partition is 
proportional to the number of elements, I .  The communication load for each partition i s  proportional to 
the number of boundary nodes, 8. A fine mesh of this solid has a total of 32,758 elements partitioned 
with 512 elements per processor. The computational workload for each partition is  5 12: the number of 
boundary nodes is 386. For this example the coarse mesh has a computgtion to communication ratio of 
0.125; the fine mesh a computation to communication ratio of I .32. Thus. the coarse meshes must bear 
more communication load per computational effort than the fine mcshes. 
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Figure 3: CG rclaxation cycle speed-up curves on Origin 2000 by mesh size. 

Second. on the coarse meshes thc algorithm rcnche3 ;I point where adding more processors not only 
produces little additional speed-up, hut actually has a detrimental etTect. This effect is caused by 
increasing communication latency when using larger sets of processors. As more processors are used, 
the processors needed by the computation are physically farther apart. Thus, as more and more 
processors are used. the latency of communicating between processors increases. The postulate that 
relaxation slow-down is caused by increasing message latency is reinforced by the observation that 
when using the SGI Origin 2000 a significant performance reduction occurs when going from 64 to 65 
or more processors. The Origin is constructed from boxes containing 64 processors each. Once more 
than 65 processors are used, inter-box communication is required, which has a much higher latency 
compared to intra-box communication. 

Using a reduced set of processors for the coarse mesh relaxations brings the communication to 
computation ratio back into balance and reduces the detrimental effect of communication latency. 
Using a reduced set of processors deliberately allows some of the available processors go idle during 
the coarse mesh computations. Let E denote the number of elements on a mesh. Based on Origin 2000 
timing iuns, the optimal number of processors f,, to use is approximately 

e, = 0.5&. ( 1 )  

SU,) = 0 . 2 5 f i .  (2) 

When using the optimal number of processors. the maximum obtainable speed-up is 

Table 2 shows how the multigrid mesh sequence described in  Table I performs in parallel on 256 
processors. The relative contribution of the coarse mesh solve time is much greater than in the serial 
case. The coarse mesh solution requires about30% of the total solution time i n  parallel versus only 2% 
in the serial case. Addition of more processors will continue to improve speed-up on the fine mesh. but 
will have a reduced effect on the perfoiinance of the coarse meshes. Thus. the overall parallel 
performance of a multigrid code is often strongly dependent on the performance on coarse mesh 
operations. 3 



I ? X  I .7Y 

Table 2: Parallel multigrid cycle timings for 756 processors. 

The second obstacle to obtaining good speed-up in a parallel adaptive multigrid code is achicting 
good load balance on each of the  multigrid meshes. A mesh with good load balance is partitioned such 
that the coinputational work across all processors is balanced.Fo r the case ofCG relaxations, good load 
balance occurs when all processors own approximately the same number of elements. A sample 
multigrid mesh hierarchy partitioned on hvo processors is shown in Figure 4. The shaded elements are 
given to processor I .  the white elements to processor 2. The mesh partitioning shown has good load 
balance on mesh 3. However. using the same spatial partitions on mesh I and mesh 3 yields poor load 
balance on the mesh I and mesh 2 operatioils. 

.Llcsl1 2 

R 
Mesh 3 

Figure 4: Example partitioning using the same spatial partitions on each mesh. 

A good solution to the multi-mesh load balance problem is multi-paititionin%. A multi-partition 
algorithm creates a separate partition for each mesh. Each mesh's partition balances the load and 
minimizes the communication for that mesh only. Multi-partitioning requires additional communication 
during the interpolation and restriction phases of the multigrid cycle. During these phases data must be 
transferred from the old partitioning layout to the new partitioning layout. Communication (represented 
by gray lines) i s  shown for the multigrid solution of a multi-partitioned mesh in Figure 5 .  Purtition 
boundary communication is required in the mesh relaxation steps and partition change corn~nunication 
is required in the interpolation and restriction steps. ParMETlS i s  used for mesh partitioning to produce 
partitions which simultaneously have good load balance. ininimalbou ndary commiiiiication. and are as 
similar to one another as possible (to reduce data transfer volume in the interpolation and restriction 
steps.) 

Results 

When using reduced processor sets on the coarse meshes and inulti-partitioriing. good speed-ups 
can be obtained for a parallel adaptive inultigrid solver. The total code speed-up for a 4,000.000 
element static deflection rocket fuel problem is sho\\n in Figure 6. The speed-ups are for the entire code 
consistiiig of error estimation. adaptive retincinent and multigrid solution' steps. On 256 processors. the 
4.000.000 element problem is solved i n  I50 seconds. which is n speed-up of I90 over the serial time. 



\ l t h , l l l ~ l l  t l lC  >pccd-LIp of the IllllltlgrILI ,,>I\LY ( I U ( l )  I\ nu t  ;I> y,lclLl r l >  'I ( ' G  \ V I \ C I  \\0111d I l l \C l>  bc 
(255  1. the riuiiiericiil cfticicncy of rlic multigrid solver ( 2 7  times tii3tc.r than CG for tlik mesh) ninkes 
the o\~ewIl bolution time for the multigrid sol\.er much Icss. The o\.crall code speed-up p i n s  from 
'idaptivc rctincnient. inidtigrid solution and parallel execution arc multiplicative. i\daptive refinement 
;IIIO\VS soh ing a prohlein Xvith a smallcr rnesh. inultigi-id a l l o ~ s  solving that mesh very efficiently. and 
parallclization substantially accelerate> the multigrid solver. Thus. parallel adaptive miiltipi-id can be 
used to produce very fast solutions to stnictural probleins. 

Figure 5 :  coiiimunicatlon in a multi-partitioned mcbh multigrid cycle 
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Figure 6: Parallel adaptive multigrid speed-up for 4,000.000 element rocket fuel mesh 
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